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SUMMARY 

A Navier-Stokes equation solver is developed for computing free surface wave and viscous flow around 
an arbitrary body, in which a free surface model is introduced into the pseudocompressibility solution. 
The governing equations are classified in a vectorial form, with primitive variables, and a block diagonal 
system is generated by the discretization of an implicit factorization method. A moving grid system fitted 
to both the free surface and body surface is generated by an effective cubic spline fitting technique. Two 
zero-equation turbulence models, namely the Cebeci-Smith model and the Baldwin-Lomax model, are 
used for turbulent calculations. Numerical simulations are carried out for the free surface viscous flows 
generated by a submerged hydrofoil and a ship model. Computed results are in reasonable agreement with 
measurements. 

KEY WORDS Euler implicit scheme Pseudocompressibility Moving grid system Free surface fitting 
Baldwin-Lomax turbulence model 

1. INTRODUCTION 

The flow around a ship is characterized by the presence of a free surface and viscosity. Until 
now the complicated interaction between wave and viscous flow and the uncertainty of the free 
surface configuration have made the solution of this problem very difficult. Accurate numerical 
prediction of waves generated by a ship is, however, very important from a practical standpoint, 
because the wave-making resistance has a rather sensitive property depending on factors such 
as hull form, the Froude number and so forth. 

Previously many efforts have been made in the simulation of flow past a ship with a free 
surface by resolving the NS equations. In all cases the basic algorithm closely follows the MAC 
method, i.e.' solving a Euler equation with the SOR iterative method to obtain the pressure 
field and then correcting the velocity field using the momentum equations. The free surface 
configuration is evaluated by simultaneously moving the marker particles distributed previously 
on  the free surface. Because the original MAC method used a spatially fixed Cartesian 
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co-ordinate system, which is not particularly well suited for the free surface flow around 
a ship-like body with a complicated geometry because of the use of a staggered mesh, 
many quasi-MAC methodszs3 were subsequently developed based on the boundary-fitted 
curvilinear co-ordinate system proposed by Thompson et al.,4 in which difficulties of 
interpolation near the free surface boundary are removed. Also, to increase the numerical 
stability, a fourth-order artificial numerical dissipation term is generally added to the con- 
vection terms for the high-Reynolds-number calculation, which, however, may result in the 
unexpected damping of waves. In addition, the explicit scheme for the momentum equations 
restricts the accuracy of the wave calculation and produces a small Courant number 
which needs a sufficiently small time increment when fine grids are used in order to achieve 
convergence. 

The main objective of the present work is to develop another NS solver which introduces 
a free surface model into Chorin’s artificial compressibility s o l ~ t i o n , ~  a standard technique 
for performing steady state incompressible flow calculations. Since one replaces the incompress- 
ibility condition by a time evolution equation for the pressure, intermediate results therefore 
become unphysical, but the equation of continuity will be satisfied in the steady state 
because the time derivative with respect to pressure then vanishes. With the pseudocompress- 
ibility technique the governing equations can be classified in a vectorial form and a block 
diagonal system is generated by the discretization of an implicit approximate factorization 
method,6 which is very convenient for high-speed processing using vectorized computers such 
as a supercomputer. 

A moving grid system is employed to provide a fit for both the free surface and body surface 
in order to satisfy boundary conditions easily, thus requiring regridding at each time step. To 
avoid consuming lengthy computer time in grid generation, a simple but effective grid generation 
method is developed which employs a cubic spline fitting technique. The basic idea is to consider 
each grid line as a two-dimensional or three-dimensional bending beam with both ends fixed. 
According to solid mechanics knowledge, with appropriate boundary conditions for the two 
ends and some loading on it, the bending beam will retain its orthogonality near both ends 
approximately with a certain form. In this respect, factors to assess grids, such as orthogonality, 
smoothing and clustering, are not difficult to satisfy. With this method a grid system fitted to 
both the deforming free surface and body surface can be obtained with less computer time, 
approximately 1% of the time being taken at one time step. To avoid the intersection of grid 
lines, Chan’s rule’ is used near the free surface and body surface; but how to control the grid 
line in an expected form, especially near complicated surfaces, remains a task to be solved in 
the future. 

In order to make the algorithm similar to those for velocity and pressure, the free surface 
configuration is governed by the equation of the kinematic condition and is discretized 
in the same way as with the implicit scheme. Investigation of the non-linear free surface 
conditions for velocity and pressure shows that the stress condition on the free surface seems 
to make no significant difference in comparison with a zero-extrapolation approach for 
the high-Reynolds-number calculation. The Cebeci-Smith turbulence model is used for the 
two-dimensional turbulence calculation and the Baldwin-Lomax model for the three-dimen- 
sional simulation. The interaction between turbulence and free surface flow is not taken into 
consideration. 

The present method embodies two computational codes for the simulations of free surface 
wave and viscous flow behind a hydrofoil and past a ship model. Validation analysis shows that 
both codes are able to estimate the free surface viscous flows reasonably well. 
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2. COMPUTATIONAL SCHEME 

2. I .  Governing equations 

Cartesian co-ordinate system become, if written in a vectorial form, 
With the pseudocompressibility technique the non-dimensionalized governing equations in a 

(1) qt + h x  + Fqy + G q z  = c R ( q x x  + q y y  + qzz) + H, 

where 

u - 2v ,  - v y  

q=[i\, E=[ 0 '-'Y,  0 u - v ,  -O"' '1 0 '  

F = [  -f '-: v :Z - vy i], G = [  -vx  w - v z  - v y  W - 2 V z  0 "1 1 ' 

B 0 0 0  

0 w - v z  0 v - vy 0 0 0  

0 P O  0 

In the fourth component of the above equations a time derivative of pressure is artificially 
added to the equation of continuity, which makes the system hyperbolic and the application of 
the implicit factorization method possible. The term p in the equation is a positive constant. In 
the case of computing a steady state flow by iterating in the time domain, the pseudocompress- 
ibility introduces no error in the converged solution, when all the derivatives with respect to 
time vanish, including the added a p / d t  term. Use of a large value of p allows time accuracy but 
makes the system of equations stiff and generally results in poor convergence. The inertia term 

is added for the acceleration process and V is defined as the velocity of the upstream boundary. 
Additionally, the following relation, in which hydrostatic pressure is excluded, is utilized instead 
of pressure p in order to simplify the algorithm: 

4 = p -k z/Fn2.  

By substituting the above formula into equation ( I ) ,  q and H become 

9 = CU, 4 w, 4IT7 H* = [V, 0, 0, 01'. 

2.2. Grid generation and co-ordinate transformation 

In order to make the scheme flexible and able to deal with boundaries of complex geometry 
in a straightforward manner, the moving grid system fitted to both the free surface and body is 
used. Thus a timely regridding is needed since the free surface deforms with time. Generally it 
is quite common that the trial and error of grid generation consumes a large percentage of the 
total computer time in solving the flow around a complicated body. Therefore the development 



398 

,/ 
*a* 

1' 
/- 

H. LIU AND M. IKEHATA 

Ll Lz 
=* -.- 

L3 

of a less time-consuming grid generation method is of great significance in the free surface 
calculation. In the present paper a grid generation method which employs a cubic spline fitting 
technique and is classified as an algebraic method is proposed. The idea of the method is mainly 
based on the beam-bending theory that each grid line can be considered as a two-dimensional 
or three-dimensional bending beam with both ends fixed. As is known, grid generation can be 
assessed by its orthogonality, smoothing, clustering and minimum grid spacing. From solid 
mechanics we know that a beam with both ends fixed under loading approximately retains its 
orthogonality near the two ends irrespective of the kind of load applied within its elastic limit. 
Thus a bending beam can be expressed as a polynomial and the grid lines demonstrate the 
properties of continuity and smoothing. Grid paints along a grid line are distributed with 
a power function which determines the grid division when the minimum grid spacing and grid 
number are given. 

As illustrated in Figure 1, a grid line is defined to be composed of three curves, curvel, curve 
2 and curue3, which are represented by third-order polynomial expressions in a local co-ordinate 
system (x, y) as 

curvel: y = a, + a,x + a2x2 + a3x3, (2) 

curve2: y = b, + b,x + b,x2 + b3x3, (3)  

curve3: y = c,, + c,x + c2x2 + c3x3 ,  (4) 

where x and y are co-ordinate values in the local co-ordinate system and ai, bi and ci are 
coefficients to be determined under the smoothing continuity condition between curves and the 
orthogonality requirement at both ends. Furthermore, a three-dimensional grid line is considered 
as the linear combination of the two-dimensional grid lines. To avoid the intersection of grid 
lines near the free surface and body, Chan's rule is used. 

The above boundary-fitted curvilinear co-ordinate system can be represented by the formulae 
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Since the co-ordinate values of x,  y and z change with time, the variables in physical space 
(u, u, w and 6) obey the formula 

where 

Using the previously derived relations of variable transformation, the governing equations 
can be transformed into the curvilinear co-ordinate system as 

41 + Aq, + Bcl,, + cq,  = Cdh,, + k,,,, + 4,, + &,, + 4,,< 

where 

A = aE’ + d F  + g G ,  B = b E  + e F  + hG’, C = c E  + f F  + i G ,  

E = E - x , I ,  F = F - y,I, G’ = G - z,I, I a 4 x 4 unit matrix, 

ci = a2 + d2 + g 2 ,  6 = b2 + e2 + h2, E = c2 + f 2  + i2, ... 

Since central differencing is used in discretizing the convection terms, the fourth-order 
numerical dissipation terms are artificially added in order to damp numerical disturbances due 
to short wavelengths and enhance numerical stability. 

2.3. Approximate factorization 

A time derivative is replaced by a Pad6 time differencing 

a i ~  
at At 1 + e A ’  
- 

where 

0, Euler explicit, 
0 = 4, Crank-Nicolson, i 1, Euler implicit. 

The parameter 8 is set to unity in the present scheme, which makes the system a Euler implicit 
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scheme. By substituting equation (8) into equation (7) and approximate factorization, equation 
(7) can be decomposed into three components given by 

[-sweep 

q-sweep 

l-sweep 

updating 
q(n+  1) = q(n) + Aq(n). 

Here the convection terms are processed by the 'local linearization' as 

where 

A =  

aut dug 

aw, avg. dwt dv, gwt "g: "1 0 ' 
(14) 

0 0 0 0  

Similarly A(Bq,) and A(Cqc) are processed and B and t can also be obtained. A(q*) and A(q**) 
are intermediate variables, whereas A(q***) is defined as the increment Aq at the nth time step. 
Spatial derivatives of t are approximated by five-point central differencing such that 

and similarly for q and [. 
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Substituting equation (15) into equation (9) yields a set of linear, ordinary differencing 

(-sweep 

equations given as 

KiAqi-2 + LiAqi-1 + MiAqi + NiAqi+l + OiAqi+2 = f i ,  (16) 

where 

8At 8At 
12 12 Ki = ~ [A + CR(B - 6)  + 120'11, Li = ~ [ - 8A + SC& - 22) - 480'11, 

8At 
12 

Ni = ~ [SA - 8C& + 2 4  - 480'11, (17) 
BAt 
12 

Mi = I + - (12A + 30C,(i + 720'I), 

fi = [RHS of equation (9)J 
8At 
12 

oi c ~ [ -A -I- C,(d + 6)  + 120'11, 

Similarly matrix coefficients can be obtained in the q- and [-sweeps. 
At boundary locations three-point differencing is implemented to avoid the extrapolation of 

points outside the computational domain, thus minimizing numerical error there. Finally, with 
appropriate boundary conditions a block pentadiagonal linear system is formed which can be 
solved efficiently using a block pentadiagonal solver. 

2.4. Boundary conditions 

centre boundary, outer boundary and free surface. Boundary conditions used are as follows. 
The boundary as illustrated in Figure 2 consists of an inflow, outflow, bottom, body surface, 

Injlow. Uniform velocity and zero pressure. 

Outflow. Neumann (zero gradient) for velocity and pressure. 

Centre boundary. Symmetry. 

Body surjiace. No-slip for velocity and Neumann (zero gradient) for pressure. 

Free surface. At the interface of air and water, considering the dynamic condition, i.e. the 
equilibrium of stresses on the free surface as illustrated in Figure 1, the stresses P,, P, and P, are 

P,, = - P  + 2 - + v f$Gui,i, (b, ) 
where ef,2,3r e:,2,3 and e;,2,3 are unit directional vectors. The stress components bij are 
expressed in tensor form as 
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Figure 2. Co-ordinate system and boundaries 

Notice that the third equation of (18) is mainly governed by the pressure term - P  in the case 
of high Re. Thus P ,  = - P  represents a reasonable approximation. In addition, for the 
assumption of no wind stresses, the viscous terms multiplied by 1/Re + Y can be set to zero such 
that 

e!eyjui,j + u ~ , ~ )  = 0, enenu. I I 1.1 . = 0. 

4 = hrccsurfacc /Fn 9 uc = L7 V( = f”, wc = f w ,  

elej”(ui, + uj ,  i) = 0, (20) 
Therefore the boundary conditions for velocity and pressure on the free surface can be clarified as 

(21) 

where the formula for indicates that the pressure is equal to atmospheric pressure if surface 
tension is neglected, and f., f, and f, are functions of geometric quantities and velocity compo- 
nents on the free surface. 

In the present study the surface tension and viscosity on the free surface are neglected because 
they negligibly affect the wave feature in the case of high Reynolds number, which will be 
discussed in Section 4. Thus a zero-extrapolation approach is used for velocity and the 
pressure is set to atmospheric pressure such that 

2 

I 
uc = 0, VC = 0, Wc = 0, 4 = h/Fn2 ( p  = pa). I 

Outer boundary. Neumann (zero gradient) for velocity and pressure. 

Bottom. Uniform velocity and zero pressure. 

2.5. Turbulence model 

For a free surface viscous flow problem a turbulence model which accounts for the free surface 
effect should be employed, because wave-turbulence interaction exists. Unfortunately, no such 
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turbulence model has been developed yet. In the present paper two zero-equation turbulence 
models, namely the Cebeci-Smith model' and the Baldwin-Lomax model, are employed for the 
two-dimensional and three-dimensional turbulence simulations respectively, in which the eddy 
viscosity is evaluated in different algebraic form in the inner and outer layers separately. The 
Baldwin-Lomax turbulence model is briefly described below. 

On the solid wall 

where 

I = kn[ 1 - exp( - $)I, n +  = nReJr,, k = 0.4, A' = 26.0. 

The vorticity is expressed by o and the shear stress on the solid wall by T,. The projection 
distance from some point on the q-line to the wall is represented by n. In addition, 

Fwake = min nmaxFmaxr Cwake U i i f f  "-}, I F m a x  

K = 00168, C,, = 1.6, C k l e b  = 0.3, Cwnke  = 0.25. 

The maximum of F(n) on the q-line is Fma, and the n at that point is denoted by nmax. The 
value of Udirr is calculated as the difference between the maximum and minimum of speed on 
the ?-line. On the solid wall the smaller of vinncr and vOulcr is chosen as v. In the wake v is 
taken to have the same form as vOutcr on the solid wall, but F(n)  has the simple form nIo1. 

In the Baldwin-Lomax model, numerical calculation is convenient since the evaluation of 
the boundary layer is removed. The effect of transition to turbulence is neglected so that the 
flow is assumed to become turbulent everywhere in the boundary layer and in the wake. In 
the computational scheme the turbulent eddy viscosity v is updated once every 20 time steps 
and is assumed to be time-independent during each 20 time steps so as to enhance the 
numerical stability and simplify the formulation. 

3. NON-LINEAR CALCULATION O F  FREE SURFACE ELEVATION 

Generally waves are conventionally viewed as having a dynamic nature, but a towing tank test 
can give steady wave profiles and patterns around a ship model in a uniform flow. Thus, similarly 
to velocity and pressure, only the converged free surface configuration is physical. In order to 
get a similar system to that for velocity and pressure, the equation of the kinematic condition 
is chosen to compute the free surface elevation. The equation of the kinematic condition in 
computational space can be written as 

ah ah dh 
- + u - + v - - w = 0. 
at at art 
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Here the formula 
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has been used, where 

Furthermore, since central differencing is also used for the convection-like terms Udh/dt and 
Vah/aq, the fourth-order numerical dissipation terms are added to damp the short wavelengths 
such that 

0. 
ah ah ah a4h a4h 
- + u - + v - - w + " h t  - + "hq - = 
at a t  av at4 av4 

By discretizing with the same time and spatial differencing scheme as that of the governing 
equations for velocity and pressure in equation (7), the equation of the kinematic condition can 
be solved similarly with a pentadiagonal solver. The boundary conditions for the free surface 
elevation calculation are chosen to correspond to those for velocity and pressure. 

4. COMPUTED RESULTS AND DISCUSSION 

4.1. Two-dimensional problem 

As a two-dimensional problem the numerical simulation of free surface waves and turbulent 
flow around a submerged hydrofoil (NACA0012 wing section), with an angle of attack of 5" at 
a Reynolds number Re = 1.0 x lo6 and a Froude number Fn = 0.567 at a submergence depth 
d = 1-29, is carried out. An H-type grid topology as shown in Figure 3 (at T = 16.1), with a 
region of x(-3.0, 40), y(-2.79, 0.0) and grids of 110 x 72, is used in order to treat the free 
surface boundary easily. In this case a cut boundary instead of a symmetrical boundary exists 
in front of and behind the body during the co-ordinate transformation, where a periodical 
condition is used. In the q-direction the grids are clustered to the solid wall with a minimum 

Figure 3. Grid system around NACA0012 wing section 
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Figure 4. Lilt and drag coefficients versus time (2D) 

grid spacing of 0.001 adjacent to the wall, and to the free surface with a minimum grid spacing 
of 0.001. In the <-direction the grids are distributed densely near the leading edge and trailing 
edge together with a limit for the maximum grid spacing of 0.075 behind the hydrofoil for 
simulating wave propagation. The grid system is rearranged at each time step to fit the deforming 
free surface boundary. The computation is started at the initial conditions of zero velocity and 
pressure everywhere and a flat free surface (h = 0), which satisfy all the boundary conditions. 
An accelerating process is achieved by adding an inertia term in the u-momentum equation of 
(1) until the 1000th time step, when the upstream velocity becomes uniform. The time increment 
is 0.001. Coefficients for the fourth-order numerical dissipation term are set to 5.0 for both the 
(- and q-directions. 

The computation is carried out until T = 16.1, when the flow field is thought to be stationary 
with a residual level of pressure increment of about 1.0 x lop6. Figure 4 illustrates the time 
history variation in the lift and drag coefficients, showing that both of them tend to reach a 
stable state from T = 13. Notice that the stable lift coefficient of around 0 5 7  shows excellent 
agreement with the experiment' and that the drag coefficient of approximately 0.009 is also in 
good agreement with the e~per iment .~  The wave profile is compared with the measurement’ 
and the results3 by the MAC method in Figure 5. The present method shows much improvement 
in wave calculation compared with the MAC method, presumably owing to the use of the 
free-surface-fitted grid system and the implicit scheme for the free surface elevation solution. 
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Figure 5. Comparison of wave profiles (2D) 

From a close-up view of the velocity vectors around the hydrofoil in Figure 6(a), no separation 
is detected near the trailing edge because of the introduction of the turbulence model. The 
pressure distributions on the face and back of the wing section are shown in Figure 6(b), in 
which a reasonable negative pressure peak on the back near the leading edge is obtained. 

4.2. Three-dimensional problem 

The wave and turbulent flow past a thin Wigley ship model whose hull form is given by the 
formula below, at a Reynolds number Re = 1.0 x lo6 and a Froude number Fn  = 0.25, is 
computed with the three-dimensional code. 

Wigley ship model. The equation of the hull form is 

y = 2 [ 1 - ry][ 1 - (31, 
where the length L = 1.0, the breadth B = 0.1 and the draft D = 0.0625. An H-0-type grid 
topology as shown in Figure 7 (at T = 3.0), with a region of x( -0.7, 1.0), ~(0.0,  0.4), z( -0.2,O.O) 
and grids of 75 x 25 x 17, is used. The grids are clustered to the solid wall with a minimum 
grid spacing of 0.001 adjacent to the wall and the symmetrical plane in the tpdirection, and to 
the free surface with a minimum grid spacing of 0.002 in the [-direction. In the t-direction the 
grids are distributed densely near the fore part and stern with a maximum grid spacing of 0055 
for simulating wave propagation. The grid system is rearranged at each time step to fit the 
deforming free surface boundary. The grid points of the intersection between the free surface 
and solid wall are set to be able to move freely along the hull surface. The computation is started 
at the initial conditions of zero velocity and pressure everywhere and a flat free surface (h = 0), 
which satisfy all the boundary conditions. An acceleration process is achieved by adding an 
inertia term in the u-momentum equation of (1) until the 1000th time step, when the upstream 
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Figure 6. (a) Velocity profiles and (b) pressure distribution (2D) 

velocity becomes uniform. The time increment is 0001 and the coefficients of numerical 
dissipation terms are set to 5.0. 

The computation is performed until T = 3.0, when the flow field is thought to become steady 
state with a residual level of pressure increment of about 1.0 x Notice that from the 
velocity vectors of six sections in the y-z plane illustrated in Figure 8, large cross-flows not only 
near the bow but also around the stern and in the wake are detected. Furthermore, a longitudinal 
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Figure 7. Grid system around Wigley model 
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Figure 8. Velocity vectors at various sections 
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vortex can be found in the wake as shown at section 60, which is believed to be due to the 
pressure difference between the keel-line and the water-line. Figure 9 shows the velocity profile 
on the free surface. The thickness of the boundary layer becomes less near the stern and in the 
wake in comparison with that of the laminar calculation. This phenomenon appears to be due 
to the interaction between the turbulent boundary and free surface waves. With the implementa- 
tion of the turbulence model the wave profile along the hull side of ship model shows good 
agreement with the measurement in Figure 10, since the unexpected wave damping due to the 
laminar boundary does not occur. The wave pattern in Figure 11 and the iso-wave contours in 
Figure 12 at T = 3.0, indicate that the prominent transverse and diverging waves are also well 
simulated. Equi-pressure contours on the hull surface are shown in Figure 13 and shear stress 
vectors are evaluated as illustrated in Figure 14. A reasonable pressure distribution can be seen, 
since the free surface elevation dominates the pressure near the free surface and this also strongly 
influences the pressure on the hull surface. Resistance coefficients consisting of the pressure 
resistance coefficient and the frictional resistance coefficient, given in Table I, are computed by 
integrating the pressures and shear stresses over the whole hull surface. By comparison between 
the measurements and computed results, it seems that the pressure resistance coefficient shows 

+0.04 

1 
- PRESENT HElHOD 

* 0 . 0 2  

2r;H 

RE=1000000 

-0.02 

I -0.04 

Figure 10. Wave configuration 
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Figure 11. Computed wave pattern 

T=3 .O 

Figure 12. Computed wave contours 
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Figure 13. Computed equi-pressure contours on hull surface 
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Figure 14. Shear stress distribution on hull surface 

Table 1. Comparison of resistance coefficients (3D) 

CP Cf c, 
Experiment, Re = 1.2 x lo6 1.010 x lo-’ 2.808 x lo-’ 3.818 x lo-’ 
Present method, Re = lo6 1903 x lo-’ 2401 x 3401 x lo-’ 

good agreement but the frictional coefficient does not. The frictional resistance coefficient of the 
turbulent calculation shows a lower value than that given by the flat plate formula. This is 
thought to be because the minimum grid spacing near the hull surface in the spanwise direction 
is not sufficiently small. The effects of further grid resolution on the improvement of the resistance 
calculation should be investigated. Also, perhaps the introduction of a wall function would show 
improvement in the case of relatively coarse grids. 

4.3. Validation analysis and discussion 

In the present study the following convergence criterion is used: 

where E is set equal to 
Throughout the present calculation it is understood that the grid system plays an important 

role in computing the viscous flow, especially the free surface flow, since the maximum spacing 
and the number of grids inside one wavelength affect the accuracy of the solution and even 
whether a wave can propagate reasonably or not. Since the implicit scheme is adopted for the 
calculation of wave height as well as of velocity and pressure, a large grid spacing is expected 
to be employed in order to save computing time, but it seems that the free surface calculation 
makes more crucial demands on grid division than velocity and pressure. In addition, it can be 
stated that the orthogonality of grids and the clustering inside the boundary layer are quite 
important in estimating the velocity profile and pressure distribution. The orthogonal grid lines 
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near the wall seem to be able to eliminate the errors in the turbulence calculation. If the number 
of grids inside the boundary layer is not sufficient, the computed boundary layer will become 
thicker and strong damping of the stern wave will occur; on the other hand, a large number of 
grids will lead to a longer computing time, especially in the three-dimensional case. 

The free surface conditions for pressure and velocity are treated in a simple manner in the 
present calculation because of the high Reynolds number. We attempted once to employ the 
stress conditions in setting the boundary conditions for velocity on the free surface of the 
two-dimensional problem, but no significant change could be found in comparison with the 
present approach. On the other hand, on the free surface the turbulence is treated the same as 
on the wall, which means that no free surface effect, which should exist, is considered. The 
investigation and explanation of the interactive influence between the turbulence and the free 
surface, i.e. how to derive a correct turbulence model with the free surface effect and how to 
take into account the turbulence influence on the stress condition on the free surface, are very 
important and are tasks for the future. 

5. CONCLUDING REMARKS 

An implicit approximate factorization method for the full Navier-Stokes solution with the 
pseudocompressibility approach in a moving grid system is developed in simulating the free 
surface waves around an arbitrary body. By introducing the pseudocompressibility, the govern- 
ing equations for velocity, i.e. the Navier-Stokes equations, the modified continuity equation 
for pressure and the equation of the kinematic condition governing the free surface configuration 
are discretized by the same algorithm and simultaneously marched out in time until a steady 
state solution is obtained. Since partial differential equations of the same hyperbolic type are 
given for all the variables such as velocity components, pressure and even free surface 
configuration, the governing equations are formulated and solved in vector form, which provides 
convenience in the numerical calculation. With the discretization of the Euler implicit differencing 
for time derivatives and the five-point differencing for spatial derivatives, a block pentadiagonal 
linear system can be obtained which is solved by an effective pentadiagonal system solver. 

A grid generation method based on beam-bending theory which uses a cubic spline fitting 
technique is developed, by which the grid system is generated fitting both the body surface and 
free surface, so as to deal with the free surface boundary conditions easily. 

The present method is first used in solving the two-dimensional free surface viscous flow 
around a submerged hydrofoil at Re = 1.0 x lo6. Comparison with measurements shows that 
the present method can predict two-dimensional free surface viscous flow reasonably well. 

The method is then employed in solving the three-dimensional free surface viscous flow past 
a ship model at Re = 1.0 x lo6. Although the wave profiles and pressures show reasonable 
results in comparison with the experimental results, there remain some points which have to be 
investigated further, such as the grid resolution for the resistance calculation and the interaction 
between turbulence and the free surface. 
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APPENDIX: NOMENCLATURE 

Cartesian co-ordinate system 
curvilinear co-ordinate system 
grid velocity components 
Cartesian velocity components 
pressure 
atmospheric pressure 
pressure in which hydrostatic pressure is excluded 
contravariant velocity components 
Reynolds number 
Froude number 
eddy viscosity 
free surface elevation 
partial derivatives 
pressure resistance coefficient: C, = P / $ p U i S ,  where p is density, U, is freestream 
speed and S is surface area 
frictional resistance coefficient: Cf = F / f p U i S  
total resistance coefficient: C ,  = C ,  + C ,  
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